VK ][630

Levels of Abstraction
n
Operating Systems

Robert L. Brown
Peter J. Denning
Walter F. Tichy

July, 1984

Research Institute for Advanced Computer Science
NASA Aines Research Center

RIACS TR 84.5

{%NASA-CR-187282) LEVELS OF ABSTRACTION IN NFC-71363
OPERATING SYSTEMS (Research Inst. for

Advanced Computer Science) 45 p unclas

00/61 0295376

RINGS

Research Institute for Advanced Computer Science




Levels of Abstraction
in
Operating Systems

Robert L. Brown
Peter J. Denning
Walter F. Tichy

Abstract:

By defining the user’s view of a computer system and aiding in every command, th@ operating system
plays a critical role in computing. Operating systems can be modeled by a hierarchy of levels correspond-

ing to important time scales or object sizes within the computer system.

Key words and Phrases:

Abstract data types, distributed file system, distributed system, hierarchical design, levels of abstraction,
network operating system, object-oriented system, operating system.

Work on this article was supported by the National Aeronautics and Space Administration under
Contract NAS2-11530

N

Authors’ addresses: Robert L. Brown, RIACS, NASA Ames Research Center, MS 230-5, Moffett Field, CA 94035 (net ad-
dress: brownOriacs); Peter J. Denning, RIACS, NASA Ames Research Center, MS 230-5, Moffett Field, CA 94035 (net address:
denningOriacs); Walter F. Tichy, Computer Sciences Department, Purdue University, West Lafayette, IN 47907 (net address:

tichyQpurdue). )




1 — INTRODUCTION
1.1 — Definitions of Operating SyStem ......coccueiimeniiirniieiieinnsistiessetiientesiseitenoaesacseseses

.................................................................................................

1.2 — Current Operating SyStems ....uceeevniicimneiemiiieeireneiriniersciouerssntsonnsanestonaeeonnacssasesons
2 — MODEL OF AN OPERATING SYSTEM ...ccuimiriiriieininnciencenseasentsnmstnenaiaesecsionaen
2.1 — The Single-Machine Levels: 1-8 cocuuiieiuiiiiiriiciiccereninmieriineasrnisnensaanestancetinecitaesses
2.2 - The Multi-Machine Levels: 9-14 .couccciciiiiniirniirnireeenacansannesinaissicsssesesssssansansonsaccasases
2.3 — General Comments on Level Structure .....cceceeeeeeemeeiiiniiimniceciomcreriananiaacsimacisieencse
3 - DISTRIBUTED CAPABILITIES (Level 8) ...ccccoviiiiinntaiiniinanesssssantsssnsnsssninseocecens
4 - COMMUNICATIONS (Level 9) ...cuuiieeniiiiiieranieeinnaiiccntacsienenasiesessssennentnaencsenssessnanes
5 — FILES (Level 10) .coccceruimimiimtiicieeiniissecsssisssssnnnasesissssstsssssssssssssnsnsanssnnsssasassassneses
6 — DEVICES (Level 11} .coecerrmiimiiininiiiisioneessesensissemmeescessersssssissnmnsesssansisnmsnsssssesnaseesssns
7 = STREAM I/O (Level 12) .couiniieniiiiiiiiienioresnnammeesssresssssassessssmsisncasstestastassasassesanse
8 — USER PROCESSES (Level 183)
9 — DIRECTORIES (Level 14)
10 - SHELL (Level 15)
11 ~ INITIALIZATION
12 — CONCLUSION ....ocieeiciieneciorarossimcossssassesassssssasasisassssennssnserssssssssssarsssssossssasansasassen
13 — ACKNOWLEDGEMENTS .....c.iftinciriteinnaesecisionsirnesnssarnsmcscnsnssssssssraosnisonsascssnaasaseas
14 - REFERENCES .....coctiiieiiiniiectiinssenssierseesnessossassessssansssrossrsssssssssssstossarsossnraanssssas

...............................................................................
.....................................................................................
...............................................................................................

...............................................................................................

LIST OF TABLES

Table 1 — An Operating System Design Hierarchy .....ccccovvemiiimmniiirimiieniicciienesceiinieecencnene.
Table 2 - Capability Type Marks and their Abbreviations .......c.ccoovimmmmmeiinnniniceiniiiinsce
Table 3 — Specification of Capability Operations .......cccccoeieiermmniiimmiimrnenciiiniciiinineenneieensee
Table 4 — Specification of Communication Level Interface ....oocuiiiiiiiiiiinicciiiiiincnnincinncianes
Table 5 — Specification of Files Level Interface ......cccccieviciiimineniirnenannicncecenees ST
Table 8 — Specification of Devices Level Interface ......ccccoeieriiimmiiiininniiicniionieicniicssccnnee.
Table 7 — Semantics of I/O Operations on Objects .....ccceciiiiiiiniiinniiiricisiisiniisssscsnnaeonences
Table 8 — Specification of User Process Operations ..........ceceeeeeeeiieniiiiiiecececcessssimeniosasacnens
Table 9 — Specification of a Directory Manager Interface .......ccccovemiiimnnicniiciccsiccccciencnneas

LIST OF FIGURES

Figure 1 — Storage Structures for Representing Objects .......cociiiiimiimmiiiiiiiiiiniiceecncnienenne
Figure 2 — Intermachine Pipe .....ccccerrmereriscssinciniiiiiiinniaiieineesieesinnetatsisssosssencsneessssnnes
Figure 3 — Steps of an Editing Session ...ceccccoriinninniiiieniniiniineenenereiiiiiiinscenacecorsesessanassanns
Figure 4 — User Process SELUCLUTE ....ccvuverececcraressterossssneesssssseiencssssssaieassssssssonsssssassassssess
Figure 5 — A Directory Hierarchy ...coocccccciiiniiniineiieiinsnnnnnmmniiectiiiissinnsnacazeaseressnsiacanes
Figure 6 — Directory StTUCLUPe ......cccimcccssecsueersareanentenmenttteeseocnseoeacsaasescassessessananaasasasses

00 O W N =




1. INTRODUCTION

The operating systems of 1955 were control programs a few thousand bytes long that
scheduled jobs, drove peripheral devices, and billed users. The operating systems of 1984 are
much larger both in size and in responsibility. The largest ones, such as Honeywell’s Multics or
IBM’s MVS, are tens of millions of bytes long. Intermediate ones, such as Bell Labs’s UNIX or
Digital Equipment’s VMS, are several hundreds of thousands of bytes long. Even the smallest,

most pared-down systems for personal computers are tens of thousands of bytes long.

The intellectual content of the field -of operating systems was recognized in the early
1970s. Virtually every curriculum in computer science and engineering includes a course on
operating systems. Texts are numerous. The continuing debates -- over the set of con‘cepts
that should be taught and over the proper mix between concepts and implementation projects

- -- are signs of the vitality of the field. _. . T Res

Since 1975, personal computers for home and business have grown into a multi- billion
dollar industry. Advanced graphics workstations and microcomputers have been proliferating.
Local networks - e.g., Ethernet, ring nets, wideband nets - and network protocols -- e.g., X.25,
PUP, TCP/IP -- allow large systems to be constructed from many small ones. The available

hardware has grown rapidly in power and sophistication.

In view of the rapid advances in power and sophistication of available hardware, it is
natural to ask: Will hardware eventually obviate software control programs? Is the intellectual
core recorded in operating systems texts outmoded? Is operating systems a dying field? In
this paper we will argue that the power and complexity of the new hardware intensifies the
need for operating systems, that the intellectual core contains the concepts needed for today’s

computer systems;’and that operating systems are essential. -

e
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1.1.. Definitions of Operating System

Before looking into these questions, we need to agree on a definition of “operating
system”. The oldest definition, which says an operating system is a control program for
allocating resources among competing tasks describes only a small portion of a modern

operating system’s responsibilities. This definition is inadequate.

Among the great problems faced by operating systems designers is managing the
complexity of operations at many levels of detail, ranging from hardware operations that take
one billionth of a second to software operations that take tens of seconds. An early strategem
was information-hiding -- confining the details of managing a class of “‘objects’ within a
module that has a good interface with its users. With information-hiding, the designe}s can
protect themselves from extensive reprogramming if the hardware or some part of the software
changes: the change affects only the small portion of the software interfacing directly with that ==
system component. This principle has been extended from isolated subsystems to an entire
operating system. The basic idea is to create a hierarchy of levels of abstraction, so that at
any level one can ignore the details of what is going on at all lower levels. At the highest level
is the user of the system, who ideally is insulated from everything except what he aims to
accomplish. As a consequence of these developments, a better deﬁnitioﬂ today' is, an operating
system is a set of software extensions of primitive hardware, culminating in a virtual machine

that serves as a high level programming environment.

Operating systems of this type can support diverse environments: programming, text

processing, real-time processing, office automation, database, and hobbyist.
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2. C-‘mn

Most operating systems for large mainframes are direct descendants of third generation
systems - e.g., Honeywell Multics, IBM MVS and VM/370, and CDC Scope. These systems
introduced important concepts such as timesharing, multiprogramming, virtual memory,
sequential processes cooperating via semaphores, hierarchical file systems, and device

independent 1/O [Denn71, Denn76].

During the 1960s, there were many projects to construct timesharing systems and test the
many new operating systems concepts. These included MIT’s Compatible Time Sharing
System (CTSS), the University of Manchester Atlas, the University of Cambridge Muitiple
Access System (CMAS), IBM TSS/360, and RCA Spectra/70. The most ambitious project of
all was Multics (Multiplexea Information and Computing Service) for the General Electrical
645 (later renamed Honeywell 6180) processor [Orga72]. Multics simultaneously tested new
concepts of processes, interprocess communication, segmented virtual memory, page
replacement, linking new segments to a computation on demand, automatic multiprogrammed
load control, access control and protection, hierarchical file system, device independence, 1/0

redirection, and a high-level language shell.

Another important concept of third generation systems was the virtual machine, a
simulated copy of the host. Virtual machines were first tested around 1966 on the M44/44X
project at the IBM T. J. Watson Research Center. In the early 1970s virtual machines were
used in IBM’s CP-67 system, a time sharing system that assigned each user’s process to its own
virtual copy of the IBM 360/67 machine. This sysfem has been moved to the IBM 370
machine and is now called VM/370 [Gold74, IBM73]. Because each virtual machine can run a
different copy of the operating system, VM/370 is effective for developing new operating

systems within the current operating system. But because virtual machines are well isolated,
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communication among them is expensive and awkward.

Perhaps the most influential current operating system is UNIX, a complete reengineering
of Multics for the DEC PDP family of computers. It is an order of magnitude smaller than
Multics. It retains the most useful concepts of Multics -- processes, hierarchical file system,
device independence, 1/O rediréction, and a high-level language shell. It dispensed with virtual
memory and the detailed protection system; it introduced the pipe. It offered a large library of
utility programs that were well integrated with the command language. Most of UNIX is
written in a high-level language, C, which has allowed it to be transported to a wide variety of -

processors, from mainframes to personal computers (Ritc74, Kern84).

In systems consisting of multiple UNIX machines connected by a high-speed local
network, it is desirable to hAide the locations of files, users, and devices from those who do not
wish to-deal with those details. LOCUS is a distributed version of UNIX that accomplishes

this by means of a directory hierarchy that spans the entire network [Pope81].

In recent years a large family of operating systems has been developed for personal

computers. These include MS-DOS, PC-DOS, APPLE-DOS, CP/M, Coherent, and Xenix.
These are all simple systems with limited function, designed for 8- and 16-bit microprocessor
chips with small memories. In many respects, the development of persohal cémputers is
repeating the history of mainframes in the early 1960s -- for example, multiprocess operating
systems for microcomputers have appeared only recently in the forms of pared-down UNIX-like
systems such as Coherent and Xenix. Because only the large firms can sell enough machines to
make their own operating systems viable, there is strong pressure for standard operating

systems. The emerging standards are PC-DOS, CP/M, and UNIX.

Research on operating systems continues. There are numerous experimental systems

exploring new concepts of system structure and distributed computation. The operating

DN
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system for the Cambridge CAP machine expioiis the hardware’s microcode support for

[,

capability addressing to implement a large number of processes in separately protected

domains. Data abstraction is easy to implement on this machine [Wilk79].

StarOS is an operating system for the Cm™* machine. Its central purpose is the supportof
the “task force,” a group of concurrent processes cooperating in a computation. StarOS also
uses capabilities to control access to objects [Jone79]. Another operating system for the Cm*
machine is Medusa. It is composed of several ‘“‘utilities”, each implementing a particular
abstraction such as a file system. Each utility can-include several parallel processes running on

separate processors. There is no central control [Oust80].

Grapevine is a distributed database and message delivery system used widely within the
Xerox Corporation. The network contains special nameservers that can find the locations of
users, groups, and other services when given their symbolic names. There i; no central control
and it can survive the failures of the nameserver machines [Birr82]. Because it does not
provide all the services of a high-level programming environment, Grapevine is not a true

operating system.

The “V kernel” is an experimental system aiming for efficient, uniform interfaces between
system components. A complete copy of the kernel runs on each machine of the network and
hides the locations of files, devices, and users. V is a descendent of THOTH, an earlier system

worked on by the author of V [Cher84, Cher82].

The Provably Secure Operating System (PSOS) is a level-structured system whose l;igh-
level code has been proved correct in the context of a rigorous hierarchical design methodology
developed at SRI International [Neum80]. Although it was intended for secure computing,
PSOS explored many principles that can help any operating system toward the goal of

provable correctness.
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These examples demonstrate that the new technology has created new control problems

for operating systems designers to solve. The need for operating systems is stronger than ever.

2. MODEL OF AN OPERATING SYSTEM

The hierarchical structure of a model operating system separates its functions according
to their characteristic time scales and their levels of abstraction. Table 1 shows an
organization spanning fifteen levels. It is not a model of any particular operating system but

rather incdrporates ideas from several systems. It includes facilities for distributed processing.

Each level is the manager of a set of “objects”, which can be hardware or software and
whose nature varies greatly from level to level. Each level also defines operations that can be

carried out on those objects. The levels obey two general rules:

1.  Hierarchy. Each level adds new operations to the machine and hides selected operations
at lower levels. The set of operations visible at a given level form the instruction set of an
abstract machine. Hence a program written at a given level can invoke visible operations

of lower levels but no operations of higher levels.

2. Information Hiding. The details of how an object of given type is represented or where it
is stored are hidden within the level responsible for that type. Hence no part of an object

can be changed except by applying an authorized operation to it.

The principle of data abstraction embodied in the levels model traces back to Dennis and
Van Horn’s 1966 paper, which emphasized a simple interface between users and the kernel
[Denn66]. The first instance of a working operating system whose kernel spanned several levels
was reported by Dijkstra in 1968 [Dijk68). The idea has been extended to generate families of

operating systems for related machines [Habe76] and to increase the portability of an operating
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TABLE 1: An Operating System Design Hierarchy.

Level Name Objects Example Operations
15 Shell User programming environment statements in shell language
scalar data, array data
14 Directories Directories create, destroy, attach,
detach, search, list
13 User Processes User process fork, quit, kill, suspend,
resume
12 Stream I/O Streams open, close, read, write
1 Devices External devices and create, destroy, open, close,
peripherals such as read, write
printer, display, keyboard
10 File System Files create, destroy, open, close,
read, write -
9 Communications Pipes create, destroy, open, close,
read, write
8 Capabilities Capabilities create, validate, attenuate
7 Virtual Memory Segments read, write, fetch
6 Local Secondary Store Blocks of data, read, write, allocate, free
device channels
5 Primitive Processes Primitive process, suspend, resume,
semaphores, ready list wait, signal
4 Interrupts Fault handler programs invoke, mask, unmask, retry
3 Procedures Procedure segments, mark__stack, call, return
Call stack, display
2 Instruction Set Evaluation stack, load, store, un__op, bin_op,
microprogram interpreter, branch, array_ref, etc.
1 Electronic Circuits Registers, gates, clear, transfer, complement,
busses, etc. activate, etc.
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system kernel {Cher82].. The Provably Secure Operating System (PSOS) is the first complete

level-structured system reported and formally proved correct in the open literature [Neum80).
We now turn to a brief summary of each level in Table 1. Greater detail follows in later

sections.

2.1. The Single-Machine Levels: 1-8
Levels 1-8 are called single-machine levels because their operations are well understood

from primitive machines and require little modification for advanced operating systems.

The lowest levels include the hardware of the system. Level 1 is the electronic circuitry,
where the objects are registers, gates, memory cells, and the like, and the operations are
clearing registers, reading memory cells, and the like. Level 2 adds the processor’s instruction

~ set, which can deal with somewhat more abstract entities such as an evaluatipn stack and an
array of memory locations. Level 3 adds the concept; ‘of a procedure and the oéerations of call
and return Level 4 introduces interrupts and a mechanism for invoking special procedures when

the processor receives an interrupt signal.

The first four levels correspond roughly to the basic machine as it is received from the
manufacturer, although there are some interactions with the operating system. For example,
interrupts are generated by hardware but the interrupt-handler routines are part of the
operating system.

Level 5 adds primitive processes, which are simply single programs in the course of
execution. The information required to specify a primitive procéss is its stateword, a data
structure that can hold the values of the registers in the processor. This level provides a
context switch operation, which transfers the attention of of a processor from one process to

another by saving the stateword of the the first and loading the stateword of the second. This
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level.contains a scheduier that seiects, from a “‘ready list” of available processes, the next
process to run after the current process is switched off the processor. This level also provides
semaphores, the special variables used to cause one process to stop and wait until another
process has signalled the completion of a task. This level has a simple hardware
implementation {Denn81]. Primitive processes are analogous to system processes in PSOS and
lightweight processes in LOCUS.

Level 6 handles access to the secondary-storage devices of a particular machine. The
programs at this levelv are responsible for operations such as positioning the head of a disk
drive and transferring a block of data. Software at a higher level determines the address of the

data on the disk and places a request for it in the device’s queue of pending work; the

requesting process then waits at a sempahore until the transfer has been completed.

Level 7 is a-standard virtual memory, a-scheme.that gives the programmer the illusion of s
having a main memory space large enough to hold the program and all its data even if the
available main memory is much smaller {Denn70]. Software at this level handles the interrupts
generated by the hardware when a block of data is addressed when it is not present in the main
memory; this software locates the missing block in the secondary store, frees space for it in the

main store, and requests Level 6 to read in the missing block.

Level 8 implements capabilities, which are unique internal addresses for software objects
definable at higher levels. This level allows capabilities to be read, but not altered. This level
provides a validate operation that enables the programmer of highc‘zr-level procedures to verify
that actual parameters are of the expected types.

Up through level 8, the operating system deals exclusively with the resources of a single
machine. Beginnihg with the next level, the operating system encompasses a larger world

including peripheral devices such as terminals and printers and also other computers attached
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to the network. In this world, pipes, files, devices, user processes, and directories can be shared

among all the machines.

2.2. The Multi-Machine Levels: 9-14

Every object in the system has two names: its “‘external name”, a string of characters
having some meaning to users, and its “internal name”, a binary code used by the system to
locate the object. The mapping from external to internal names is controlled by the user
through directories. The mapping from internal names to physical locations is controlled by
the operating system, giving it the ability to move objects among several machines without
affecting any user’s ability to use those objects. This‘principle, called delayed binding, was

important in third generation operating and is even more important today [Denn71}.

To hide the locations of all sharable objects, both external and internal names must be

S T

global, i.e., they can be interpreted on any machine. Unique external names can be constructed
as pathnames in the directory hierarchy (defined at Level 14). Unique internal names are
provided by capabilities (Level 8). If the local network communication system (Level 9) is

efficient, software at the higher levels can obtain access to a remote object with little penalty.

Level 9 is explicitly concerned with communication between processes, which can be
arranged through a single mechanism called a pipe. A pipe is a one-way channel: a stream of
data flows into one end and out of the other. A request to read items is delayed until they are
actually present in the pipe. A pipe can equally well connect two processes on the same
machine or on different machines. A set of pipes linking levels iﬁ all the machines can serve as
a broadcast facility, which is useful for finding resources that might be anywhere in the
network [Bogg83]. Pipes are implemented in UNIX [Ritc74] and have been copied in recent

systems such as iIMAX [Orga83] or XINU [Come84].

n ity At



July 10, 1984 1

Level 10 provides for. long-term storage of named files. Whereas Level 6 deais with disk
storage in terms of tracks and sectors — the physical units of the hardware - Level 10 deals
with more abstract entities of variable length. Indeed a file may be scattered over many
noncontiguous tracks and sectors. To be examined or updated, a file’s contents must be copied
between virtual memory and the secondary storage system. If a file is kept on a different

machine, Level-10 software can create a pipe to Level 10 on the file’s home machine.

Level 11 provides access to external input and output devices such as printers, plotters,
and the keyboards and display screens of terminals. There is a standard interface with all
these devices and again a pipe can be used to gain access to a device attached to another

machine.

Level 12 provides a means by which user processes can be attached interchangeably to
pipes, files, or devices for input and output. The idea is to make each of the fundamental
operations of Levels 9, 10, and 11 (OPEN, CLOSE, READ, and WRITE) look the same so
that the author of a program need not be concerned with the differences among these objects.
This is achieved in two steps. First, the information contained in pipes, files, and devices is
regarded simply as streams of bytes; requests for reading or writing move segments of data
between streams and a user process. Second, a user process is programmed to fequest all input
and output via ports, which are attached by the open operation at run time to specific pipes,

files, or devices.

Level 13 implements user processes, which are virtual machines executing programs. It is
important to distinguish the user process from the primitive process of Level 5. All the
information required to define a primitive process can be expressed in the stateword that

records the contents of the registers in the processor. A user process includes not only a

primitive process, but also a virtual memory containing the program and its work space, a list
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of arguments supplied as parameters when. the process was started, a list of objects with which
the process can communicate, and certain other information about the context in which the

process operates. A user process is much more powerful than a primitive process.

Level 14 manages a hierarchy of directories that catalogue the hardware and software
objects to which access must be controlled throughout the network: pipes, files, devices, user
processes, and the directories themselves. The central concept of a directory is a table that
matches external names of objects with capabilities containing their internal names. A
hierarchy arises because a directory can include among its entries the names of subordinate
directories. Level 14 ensures that the subhierarchies encached at each machine are consistent

with one another.

The directory level is responsible only for recording the associations between the external
names and capabilities; other levels manage the objects themselves. Thus when a directory of
devices is searched for the string ‘“‘laser”, the result returned is merely a capability for the laser
printer. The capability must be passed to a program at Level 11, which handles the actual

transmission to that printer.

Level 15 is the ‘“shell”, so called because it is the level that separates the user from the
rest of the operating system. The shell is the interpreter of a high level rcomma;nd language
through which the user gives instructions to the system. The shell incorporates a listener
program that responds to a terminal’s keyboard; it parses each line of input to identify
program names and parameters; it creates and invokes a user process for each program and

connects it as needed to pipes, files, and devices.

v -

-
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2.3. Generai Comments on Level Structure

The level structure is a hierarchy of functional specifications. Its purpose is to impose a
high degree of modularity and enable incremental verification, installation, and testing of the
software.

In a functional hierarchy, a program at a given level may directly call any visible
operation of a lower level. No information flows through any intermediate level. The level
structure can be completely enforced by a compiler, which can insert procedure calls or expand
functions in-line [Habe76]. A recent example of its use is in XINU, an operating system for a

distributed system based on LSI 11/02 machines [Come84).

It is important to distinguish the level structure discussed here from the layer structure of

the ISO (International Standards Organization) model of long-haul network protocols

[Tane81). In the ISO model, information is passed down through all the layers on the sending * e

machine and back up through all the layers on the receiving machine. Each layer adds
overhead to a data transmission, whether or not that overhead is required. Models for long-

haul network protocol structure may not be efficient in a local network [Pope81].

A significant advantage of a functional levels over information-transferring layers is
efficiency: a program that does not use a given function will experience ﬁo overhead from that
function’s presence in the system. For example, procedure calls will validate capabilities only
when they are expected. Common objects (such as pipes, files, devices, directories, and user
processes) are implemented. by their own levels rather than as new “types” within a general

" type-extension scheme [Wulf81].

Each level should be able to locate local objects by their internal names without having to
rely on a central mapping mechanism. This is not only a step toward reliability in a

distributed network, but also efﬁciency because central mechanisms are prone to be
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bottlenecks.

Operating system designers ought to take reasonable steps to verify that each level of the
operating system meets its specifications. This too serves efficiency as well as reliability: run-
time checks need be included in system procedures only for conditions that cannot easily be
verified a priori. Thus, system procedure calls must check at run time that expected
capabilities are present as parameters because the calling programs may be unverified; but

other aspects of parameter type checking can be performed by a compiler.

In the-following sections we will give more detail about the mechanisms from the

capability level (Level 8) upwards.

3. DISTRIBUTED CAPABILITIES (Level 8)

The external names of sharable objects are character strings of arbitrary length having
meaning to human users. Because these strings are difficult to manipulate efficiently, the
operating system provides internal names for quick access to objects. One purpose of Level 8 is

to provide a standard way of representing and interpreting internal names for objects.

To prevent a process from applying invalid operations to an object whose internal name it
knows, the operating system can attach a type code and an access code to an internal name.
The combination of codes (type, access, internal-name) is called a capability. All processes are
prevented from altering capabilities. The system assumes that the very fact that a process
holds a capability for an object is proof of its authorization to use that object; processes are

responsible for controlling the capabilities they hold.

The simplest way to protect capabilities from being altered is to tag the memory words
containing them with a special bit and to permit only one instruction, the “create-capability”

instruction, to set that bit [Fabr74, Wilk79]. The IBM System 38 is a recent example of an
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efficient system-using tags to distinguish capa
Capabilities were first proposed as an efficient method of implementing an object-oriented
operating system [Denn66|. This has continued to be the main reason for using them

[Wulf81, Levy84, Orga83].

All existing implementations of capabilities are based on a central mechanism for
mapping the internal name to an object. These mappings are direct extensions of virtual
memory addressing schemes [Denn76, Fabr74]. Unfortunately, a central mapping scheme
cannot be used with a distributed system whose component machines may fail. So the
responsibility for mapping must be distributed by allowing each the procedures of Levels 9-14
on each machine to read and interpret locally the fields within validated parameter
capabilities.

The storage structure and mapping scheme for capabilities is illusttate;i in Figure 1. The
name field of a capability of type T consists of a code M for the machine on which the
capability was created and an index number /. The machine number is needed because some
capabilities (those for open pipes, files, and devices) can only be used on the issuing machine.
The access code specifies which of the 7-type operations can be applied to the object. The
index number I is used by the level in charge of T-type objects on machine M to address a
descriptor block for the given object. The descriptor block records control information about
an object, times and dates of creation and last update, and current size and attributes of the
object. The location of the descriptor block denotes the location of the object - moving the

descriptor block from one machine to another effectively moves the object.

The procedures implementing operations at Levels 9-15 must conform to certain
standards that ensure the proper use of capabilities. One is an agreement on the codes for the

object types; eight are listed in Table 2. We will use the notation T'_cap to denote a
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name = (machine#,index)

Process Type Access Name
Workspace
1=
Virtual T A X R =Mt
Memory)
T | A2 X2 X2 = (M2,I2)

—

Level that
Manages T

Index Addr T

Il —

12 —_—

Local Map B

Descriptor Blocks

-

Virtual

Memory Segment
Level

Secondary

Storage
Level Block

FIGURE 1. The storage structure for representing object consists of a chain starting with a
capability, through a local map under the control of the object’s level, through a descriptor
block, to the object itself. A change in location of the object requires no change in any
capability. The index numbers are generated locally by the level when it creates objects. In
this example, the process holds two capabilities of type T; one of the objects is in a segment in
virtual memory and the other is in a block of secondary storage.
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capability of type T where T is one of the abbreviations in the table (e.g. file_cap}= -

The remaining standards concern the creation of capabilities pointing to new objects and
the application of specific operations to those objects. Suppose Level L (L > 8) is the manager
of T-type objects. This level contains a procedure to create new objects of type T and one or
more procedures to apply given functions to objects of type T. The create operation must use

a call of .the form
T _cap := CREATE_ T(initial-value)

This procedure performs all the steps required to set up the storage for a new object of type T:
it obtains space in secondary storage for the object and stores in it the given initial value, it
sets up a descriptor block, it finds an unused index and sets up the entry in the local map, and

finally. it creates a capability of type T (denoted “T_cap”).

TABLE 2: Capability Type Marks and their Abbreviations.

Level Type mark Abbreviation

14 directory dir
13 user process up
11 device dev
open device op_dev
10 file file
open file op_file
9 pipe pipe

open pipe op__pipe
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Creating a capability is a critical operation. Level 8 implements a special operation for

this purpose:
T cap := CREATE_CAP(])

where I is the local index number chosen by Level L. When used inside the CREATE_T
operation on machine M, CREATE__CAP constructs a capability (T, 4, M, I), sets to 1 the
capability bit of the memory word containing it, and returns the result. The code for M comes
from a register in the processor. The code for A is the one denoting maximum access. The
code for T comes from a field in the program status word (PSW), a processor register that also
contains the program counter of the current proceduf’e. The compilers must be set up to
generate type(PSW)=T only for the CREATE _T procedure and type(PSW)=null for all other’

procedures. CREATE _CAP fails if executed when type(PSW)=null.

The procedures for applying operations to a given object have the generic form
APPLY OP(T_ cap, parameters)

which means that OP(parameters) must be applied to the object denoted by T_cap. The
compiler can validate that the first actual parameter on any call to APPLY__OP is indeed of
type T by using another operation of Level 8, called VALIDATE, which checks that this
parameter is a capability whose type code is T and whose access code enables operation OP.
VALIDATE can also be used to verify the presence of other capabilities among the other

parameters.

A procedure may reduce the access rights of a capability it passes to another procedure by

using the Level-8 operation ATTENUATE.
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Table 3 summarizes the operations implemented at Level 8.

4. COMMUNICATIONS (Level 9)

The communications level provides a single mechanism, the pipe, for moving information
from a writer process to a reader process on the §ame or different machines. The most
important property is that the reader must stop and wait until the writer has put enough data
into the pipe to fill the request. Level 9 gives the higher levels the ability to move objects

among the nodes of the network.

The external interface presented by the communications level consists of the commands in
Table 4. When two communicating processes are on the same machine, a pipe between them
can be stored in shared memory and the READ_PIPE and WRITE_ PIPE operations are

implemented the same as the send and receive operations for ““message queues” [Brin73]. ea

TABLE 3: Specification of Capability Operations (Level 8).

Form of call Effect

T_cap := CREATE_CAP(]) If the type-mark in the current PSW is non-nuil, create a
new capability with type field set to that mark, access code
maximum, machine field the local machine identifier, and
index I

VALIDATE(p, », (T1,81},..., (Tn,an}) Verify the capability at the caller’s virtual address ». For at
least one §=1,...,8 the following must be true: the capability
confains T% in its type field and permita access ai. If T
denotes op _pipe, op_file, or op_ dev, the machine field
must match the identifier of the local machine. (Fails if
these conditions are not met.)

cap := ATTENUATE(cap, mask} Returns a copy of the given capability with the access field
replaced by the bitwise AND of mask and the access field
from cep.
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TABLE 4: Specification of Communication Level Interface (Level 9).

Form of call

Effect

pipe_cap := CREATE_PIPE()

DESTROY . PIPE(pipe_cap)

op_pipe_cap := OPEN_PIPE(pipe_cap, rw)

READ_PIPE
WRITE_PIPE
CLOSE_PIPE

op_pipe_cap := BROADCAST(msg)

Creates a new empty pipe and returns a capability for it. (If
the caller is a user process, it can store this capability in a
directory entry and make the pipe available throughout the
system.)

Destroy the given pipe (undo a create pipe operation).

Opens the pipe named by the pipe capability by allocating
storage and setting up a descriptor block. Initially, the pipe
is empty. If rw=uwrite, the open-pipe capability has its write
permission set and can be used only by the process at the
input end of the pipe. If rw=resd, the open-pipe capability
has its read permission set and can be used only by the
process at the output end of the pipe. Does not retursa until
both reader and writer have requested connections. (Fails if
the pipe is already open for writing when rw=write or
reading when rw=resd.) If both sender and receiver are on
the same machine, the open-pipe descriptor block will
indicate that shared memory can be used for the plpe.
otherwise a network protocol must be used.

These have the same effects as the READ, WRITE, and
CLOSE operations desctibed in the section on stream 1/O.

Broadcast a message to all type managers in the network
that manage objects of the same type as the calling local
type manager. Returns an open pipe capability for reading
responses.

When the two processes are on different machines, the communications level must

implement the network protocols required to move information reliably between machines.
(See Figure 2.) These protocols are much simpler than long-haul protocols because congestion

and routing control are not needed, packets cannot be received out of order, fewer error types

are possible, and errors are less common [Pope81].

The read and write operations become ambiguous unless both a reader process and a

writer process are connected to a pipe. Should a writer be blocked from entering information

’

until the reader opens its end? What happens if either the reader or writer breaks its

20
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FIGURE 2. A network protocol must be used when two processes connected by a pipe are on
different machines. The WRITE requests of the sender append segments to a stream awaiting
transmission. The sender process tranamits the stream as a sequence of packets, which are
converted back into a stream and placed in the receiving buffer. Each READ request of the
receiver waits until the requested amount of data is in the buffer then returns it.

connection? Questions like these are dealt with by a connection protocol. A simple connection

protocol is called rendezvous on open and close:

1. The open-for-reading and the open-for-writing requests may be called at different times

but both returns are simultaneous.




July 10, 1984 22

2.  The close operation, executed by the reader, shuts both ends of the pipe; executed by the

writer is deferred until the reader empties the pipe.

A pipe capability can be stored in a file or a message and passed to another machine over
an existing open pipe or by broadcast. A pipe capability can also be listed in a directory (to be
discussed later), making the pipe a global object. (In this case it is like a “FIFO file” in

System-5 UNIX [Bell83). )

The communications level also contains a broadcast operation to permit Levels 10, 11,
and 12 to request mapping information from their counterparts on other machines. For
example, if the file level on one machine cannot locally open the file named by a given.
capability, it can broadcast that capability to the file levels of other machines; the machine
actually holding the file responds with enough information to allow the broadcaster to

~

complete its pending open operation.

5. FILES (Level 10)

Level 10 implements a long-term store for files. A file is a named string of bits of known,
but arbitrary length and is potentially accessible from all machines in the network. The

operations for files are summarized in Table 5.

To establish a connection with a file, a process must present a file capability to the
OPEN_ FILE operation, which will find the file in secondary storage and allocate buffers for
transmissions between the file and the caller. The transmissions themselves are requested by
READ_FILE and WRITE _FILE operations. Each read operation copies a segment of
information from the file to the caller’s virtual memory and advances a read pointer by the

length of the segment. Each write operation appends a segment from the caller’s virtual
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TABLE 5: Specification of Files Level Interface (Level 10).

Form of call Effect

file_cap := CREATE_FILE() Creates a new empty file and returns a capability for it. (If
the caller is a user process, it can store this capability in a
directory entry and make the file available throughout the
system.})

DESTROY: FILE(file_cap) Destroy the given file (undo a create-file operation).

op_file_cap := OPEN_FILE(file_cap, rw) Opens the file named by the file capability by allocating
storage for buffers and setting up a descriptor block. The
value of rw (read, write, or both) is put in the access field of
the open-file capability. The read pointer is set to zero and
the write pointer to the file's length. (Fails if the file is
already open.)

READ_FILE These have the same effects as the READ, WRITE, and
WRITE_FILE CLOSE operations described in the section on stream 1/0.
CLOSE_FILE

REWIND(op_file_ cap) Reset read pointer to zero.

ERASE(op__file_cap) Set file length and write pointer to tero; release secondary

storage blocks.occupied by the file.

memory to the end of the file.

In a multi-machine system, the file level must deal with the problem of nonlocal files.
What happens when a process on one machine requests to open a file stored on another

machine? There are two alternatives:

1. Open a pair of pipes to Level 10 on the file’s home machine; read and write requests are
relayed via the forward pipe for remote execution; results are passed back over the reverse

pipe. (This is called remote open.)

2. Move the file from its current machine to the machine on which the file is being opened;

thereafter all read and write operations are local. (This is called file migration.)

“
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Both methods are feasible. An instance of remote open is in the Berkeley COCANET system

[Rowe82|. An instance of migration is in the Purdue STORK file system {Pari83].

The open connection descriptor block for a file, which is addressed by an open-file
capability, indicates whether read and write operations can be performed locally or must
interact with a surrogate process on another machine. In the latter case, the required open-

pipe capability will be implanted in the descriptor block by the open-file command.

Figure 3 illustrates the types of capabilities generated and used during a typical file-

editing session.

One important improvement to the basic file system is to allow multiple readers and
writers by building in to the read and write operations a solution to the “readers and writers”
synchronization problem [Holt78]. Another is to use a version control system to automatically
retain different revisions of a file; the file system can then provide access to the older versions

when needed [Tich82].

6. DEVICES (Level 11)

The devices level implements a common interface to a wide range of external input and
output devices -- for example, terminal displays and keyboards, printers, plotters, time-of-day
clock, and optical readers. The interface attempts to hide differences among devices by making
input devices appear as sources of datai streams and output devices appear as sinks. Obviously,
the differences cannot be completely hidden -- for example, cursor-positioning commands must
be embedded in the data stream sent to a graphics display -- but a surprising amount of

uniformity can be achieved.

Corresponding to each device is a device driver program that translates commands at the

interface to instructions for operating that device. A considerable amount of effort may be
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FIGURE 3. The steps of an editing session generate and use various capabilities. 1) Convert
the external name string to a capability, cI; this can be done by a directory-search command.
2) Open the file for reading and writing by the command c2 := OPEN_FILE (c1, RW). 3)
Copy the file into a buffer by the command READ_FILE(c2, B, all). 4) Edit the contents of

the buffer. 5) Replace the older versiom of the file by the pair of commands “ERASE(c2);
"WRITE_FILE(c2, B, L)”, where L is the length of the buffer. 6) Close the file by the

command CLOSE_FILE(cg).
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required to constructa reliable, robust device driver. - When a new device is attached to-the

system, its physical address is stored in a special file accessible to the device drivers.

Table 6 summarizes the interface for external devices.

7. STREAM /O (Level 12)

An important principle adopted in the hypothetical operating system we are describing
here is input-output independence. At Levels 9, 10, and 11 the same fundamental operations
(namely OPEN, CLOSE, READ, and WRITE) are defined for pipes, files, and devices.
Although writing a block of data to a disk calls for a sequence of events quite different from
that needed to supply the same data to the laser printer or to the input of another program,

the author of a program does not need to be concerned with those differences. All read and

TABLE 6: Specification of Devices Level Interface (Level 11).

Form of call Effect

dev_cap := CREATE_DEV(type, address) Returns a capability for a device of the given type at the
given address. The access code of the returned capability
will not include “W? if the device is read-only or “R" if the
device is write-only.

DESTROY_DEV(dev_cap) Detach the given device from the system (undo a create-
device operation).

op_dev_cap := OPEN_DEV(dev_cap, rw) Opens the device named by the device capability by
allocating storage for buffers and setting up a descriptor
block. The value in the access field of the open-device
capability is the logical AND of rw and the access code of
the device capability. (Fails if the device is already open.)

READ_DEV These have the same effects as the READ, WRITE, and

WRITE_DEV CLOSE operations described in the section on stream 1/0.
CLOSE_DEV
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write.statements in.a program can refer to input and -output ports, which are attached to

particular files, pipes, or devices only when the program is executed.

This strategy, which is an instance of delayed binding, can greatly increase the versatility
of a program. A library program (such as the pattern-finding “grep” program in UNIX) can
take its input from a file or directly from a terminal and can send its output to another file, to
a terminal, or to a printer. Without delayed binding, each program would have to be written

to handle each possible combination of source and destination.

A common model of data must be used for pipes, files, and devices. The simplest
possibility is the stream model in which these objects are media for holding streams of bits.
Corresponding to each of these objects is a pair of pointers, R for reading and W for w;riting; R
counts the number of bytes read thus far and similarly for W. Each read request begins at
position R and advances R by the number of bytes read. Similarly, each write request begins

at position W and advances W by the number of bytes written.

The blocks of data moved by read or write requests are called segments; seg(z,n) denotes a
contiguous sequence of n bytes beginning at position z in a given data stream. The exact
interpretation of a read (or write) request depends on whether the ségment comes from a pipe,
file, or device. For example, a read request can only be applied at the output end of a pipe and
the reader is required to wait until the writer has supplied enough data to fill the request. An
output-only device, such as a laser printer, cannot be read and an input-only device, such as a

terminal keyboard, cannot be written.

The OPEN operation of Level 12 returns an op_ T _cap, corresponding to a given T_cap
for T, a pipe, file, or device. The op_T cap represents an active connection through which
data may be passed efficiently to and from the object. The READ and WRITE operations

request segment moves across such a connection. The CLOSE operation breaks the connection.
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Because the.stream-model has. already been- incorporated into the pipes, files, and devices
levels, the only new mechanism is a way of switching from a Level-12 operation to its
counterpart in the level for the type of object connected to a port. For example,

OPEN(T __cap, rw) means

CASE T OF
pipe: RETURN OPEN_PIPE(T_cap, rw);
filee RETURN OPEN_FILE(T _cap, rw);
dev: RETURN OPEN_DEV(T_ cap, rw);
ELSE: error;

END CASE

Table 7 summarizes the interpretations of the four operations of OPEN, CLOSE, READ,

and WRITE for the three kinds of input-output object.

The stream model is not used in every operating system. For example, in Multics,
segments are explicit components of the virtual memory; there is no need for.a separate
concept of file because segments are retained indefinitely until deleted by their owners
(Orga72|. In Multics the four operations of Table 7 are implicit. The first time a process refers
to a segment, a “‘missing-binding’’ interrupt causes the operating system to load and bind that
segment to the process. The process can thereafter read or write the segment using the
ordinary virtual-addressing mechanism. Certain segments of the address space are
permanently bound to devices; reading or writing those segments is equivalent to reading or
writing the device. There is no concept of pipe, but the interprocess communication

mechanism allows a data stream to be transmitted from one process to another.

8. USER PROCESSES (Level 13)

A user process is a virtual machine containing a program in execution. It consists of a

primitive process, a virtual memory, a list of arguments passed as parameters, a list of ports,
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TABLE 7: Semantics of I/0 Operations on Objects (Level 12)

Form of call Pipe File Device
op_T cap := Verify that T cap refers Verify that T cap refers Verify that T cap refers
OPEN(T_cap, rw) to an unopened pipe. Use |. to an unopened file. Use to an unopened device.

OPEN PIPE(T cap, rw)
to initialize an open-pipe
descriptor block in which
R = W = 0; return the
op_pipe_cap.

OPEN FILE(T cap, rw)
to initialize an open-file
descriptor block in which
R =0and W =L (file
length); return the

op _file cap.

Use OPEN DEV(T _cap,
rw) to initialize az open-
device descriptor block in
which B =0or W =0,
according as the device is
input or output; return
the op_dev cap.

READ( op T cap, a, n)

Wait until R +n S W.
Invoke

READ PIPE(op pipe cap,
a, 1) to copy seg (R ,x)
to seg (¢ ,n ) and advance
R toR+n. Hn=dl,
return immediately with

Setm =min| L -R,a}.
Invoke

READ FILE(op file cap,
a, m) to copy seg (R ,m )
to seg (e ,m ). If n=all,
return immediately with
whatever is in the file,

Invoke

READ DEV(op _dev cap,
a, m) as for file. If n=all,
return immediately with
whatever input is
available, seg (R ,W ~-R ).
(No effect for output

whatever is in the pipe, seg (R ,W-R). device.)
seg (R ,W—R).
WRITE( op_T._cap, a, n) Invoke Invoke Invoke
WRITE PIPE(op_pipe cap, -| WRITE FILE(op file cap, WRITE _DEV(op dev cap,

&, n) to copy seg (8 ) to
seg (W ,n ) and advance
W to W +s. (May
awaken waiting reader).

a, n) as for pipe, plus
advance L to L +n.

a, n) as for pipe. (No
effect for input device.)

CLOSE(op T cap)

If the pipe contains &
waiting reader, retura to
that reader the remaining
segment in the pive.
Invoke

CLOSE _PIPE(op.pipecap)
to deallocate the open-
pipe descriptor block.

Invoke

CLOSE _FILE(op file cap)
to deallocate the open-file
descriptor block.

Invoke

CLOSE DEV(op dev cap)
to deallocate the open-
device descriptor block.

29

and context. Each “port” is a capability for an open -pipe, file, or device. The *“context™ is a
set of variables characterizing the environment in which the process operates; it includes the
current working directory, the command directory, a link to the parent process, a linked list of
spawned processes, and a signal variable that.counts the number of spawned processes whose

execution is yet incomplete. Figure 4 illustrates the format of a user process descriptor block.
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FIGURE 4. A user process is a virtual machine created for the purpose of executing a given
program. It contains a primitive process, a virtual memory holding the given program, a list

of arguments supplied at the time of call, a list of ports, and a set of context variables. By
convention, PORTS(0] is the default input and PORTS[1] is the default output; these two

ports are bound to pipes, files, or devices when the process is created. The process can open

other ports as well after it commences execution.

A new user process is created by a FORK operation. The creator is called the “parent”

and the new process a ‘“‘child”. A parent can exercise control over its children by resuming,

suspending, or killing them. A parent can stop and wait for its children to complete their tasks

by a join operation, and a child can signal its completion by an exit operation. Table 8

summarizes.
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TABLE 8: Specification of User Process Operations (Level 13)

Form of Call

Effect

up_cap := FORK(file_cap, params, in, out)

JOIN(A)

KILL{up_ cap)

EXIT

SUSPEND(up__cap)

RESUME(up_ cap)

op_T_cap := OPEN(T_cap,rw)

_ Put the primitive process contained within the user process

Allocate a user process descriptor block. Create a suspended
primitive process and store its index in a new user-process
capability. Create a virtual memory and load the executable
file denoted by file_cap. Copy the parameters into the
ARGS list. Verify that ix and euf are capabilities for pipes,
files, or devices; if so, open in for reading and put the open-
capability in PORTS|0], and open out for writing and put
the open-capability in PORTS(1].

Wait until caller’s context variable, signal, is A, then return.

Terminate the designated user process, but only if it is a
child of the caller. This entails destroying the primitive
process and virtual memory, closing open pipes, files, or
devices connected to ports, releasing the storage held by the
descriptor block, and removing the deleted process from the
list of the caller’s children.

Terminate the caller process and add 1 to the signsl variable
of the parent process.

“up_cap” into the suspended state, but only if the caller is
the parent of process “up_cap”.

Put the primitive process contained within the user process
“up__cap” into the ready state, but only if the caller is the
parent of process “‘up__cap”.

Invoke the OPEN command in Level 12, store & copy of the
result in the next available position in the PORTS table and
return the result to the caller (T is pipe, file, or device0.

31

Notice that an OPEN operation appears in Table 8. This OPEN operation hides the

Level-12 OPEN from higher levels. It allows Level 13 to store copies of all open-object

capabilities in the PORTS table. When a process terminates, Level 13 can assure that all open

objects are closed by invoking the Level-12 CLOSE operation for each entry in the PORTS

table.




July 10, 1984 32

9. DIRECTORIES (Level 14)

Level 14 is responsible for managing a hierarchy of directories containing capabilities for
sharable objects. In our hypothetical system, these are pipes, files, devices, directories, and
user processes; capabilities for open pipes, files, and devices are not sharable and cannot appear
in directories. A hierarchy arises because a directory can contain capabilities for subordinate

directories.

A directory is a table that matches an external name, stored as a string of characters,
with an access code and a capability. In a tree of directories, the concatenated sequence of
external names from the root to a given object serves-as a unique, system-wide external name

for that object. A directory system of this kind has been implemented on the Cambridge CAP

root
dev @ user
o !
Iaser clock m'off eqn passwd denmng tichy
terminal net-hosts brown

FIGURE 5. A directory hierarchy can be depicted as an inverted tree whose topmost node is
called “root”. Some directories are permanently reserved for specific purposes. For example,
the dev directory lists all the external devices of the system. The /il directory lists the library
of all the execitable programs maintained by the system’s administration. A user directory
contains a subdirectory for each authorized user; that subdirectory is the root of a subtree
belonging to that user. In UNIX, the unigue external name of an object is formed by
concatenating the external names along the path from the root, separated by slash (/) and
omitting ‘“‘root”. Thus the laser printer’s external name is ¢/dev/laser”.
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. [exr=1. 1
machine {Wilk79].

The principal operation of Level 14 is a search command that locates and returns the
capability corresponding to a given external name. Thus the directory level is merely a
mechanism for mapping external to internal names. Only one type of capability can be
mapped to an object at this level: a directory capability. All other capabilities must be
presented to their respective levels for interpretation. Information about object attributes,
such as ownership or time of last use, is not kept in directories; it is kept in the object

descriptor blocks within the object manager levels.

name access cap

parent

self —_—

dev —_

lib \ name access

etc parent —

user self —
laser
clock

"root" terminal
" dev"

FIGURE 6. A directory is a table matching an external name string with an access code and
a capability. Every directory contains a capability pointing to its immediate parent and a
capability pointing to itself; the self-capability is can be used to fill in the parent entry in a
new subordinate directory. Because directories are at a higher level than files, the file system
can be used to store directaries. A directory containing only the self and parent entries is

considered empty.
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The requirement for system-wide unique names implies-that the directory level also has
the responsibility for ensuring that portions of the directory hierarchy resident on each machine
are consistent. This can be accomplished by methods for replication in a distributed database
system [Seli80]. To control the number of update messages in a large system, the full directory
database may be kept on only a small subset of machines (e.g., two or three) implementing a
stable store. Copies of the views of the directory database being accessed by a given user can
be stored in a workstation or other local system after that user logs in. Operatibns that modify
an entry in a directory must send updates to the stable-store machines, which relay them to

affected workstations.

Specifications of the principal operations of the directory level are given in Table 9.
These operations allow higher-level programs to create objects and store capabilities for them
in directories. This table is not a complete specification of a directory manager; for example, it

contains no command to change the name and access fields of a directory entry.

The attach operation is used to create new new entry in a directory. The access field of
the capability returned by a search operation will be the conjunction of the entry’s access code

and the access field already in the capability.

In the special case of attaching a directory to a directory, the attach operation must also
define the parent of the newly attached directory. The operation fails if a parent is already
defined (see Figure 6). The detach operation only removes entries from directories but has no
effect on the object to which a capability points.. To destroy an object, the destroy operation
of the appropriate level must be used. To minimize inadvertent deletions, the destroy-directory

operation fails if applied to a nonempty directory.

The attach and detach operations must notify the stable store so that changes become

effective throughout the system. To keep this simple, we have required a) that an empty
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TABLE 9: Specification of a Directory Manager Interface (Level 14).

Form of Call

Effect

dir_cap := CREATE_DIR(access)

DESTROY _DIR(dir_cap)

ATTACH(obj_cap, dir_cap, name, access)

DETACH(dir_cap, name)

obj_cap := SEARCH(dir_cap, name)

seg := LIST{dir_cap)

Allocate an empty directory. Return a capability with its
permission bits set to the given access code. (This directory
is not attached to the directory tree.)

Destroy (remove) the given directory. (Fails if the directory
is nonempty.)

Make an entry called neme in the given directory (dir__csp);
store in it the given object-capability (ebj_cap) and the
given access code. If obj _cap denotes a directory, set its
parent entry from the self entry of the directory dir_ csp.
Notify the directory stable store of the change. (Fails if the
name already exists in the directory dir__cap, if the directory
dir__cep is not attached, or if ebj_cep denotes an already-
attached directory.)

Remove the entry of the given seme from the given
directory. Notify the directory stable store of the change.
(Fails if the name does not exist in the given directory or if
the given directory is nonempty.) ’

Find the entry of the given neme in the given directory and
return a copy of the associated capability. Set the access
field in the returned capability to the minimum privilege
enabled by the access fields of the directory entry and of the
capability. (Fails if the name does not exist in the given
directory.)

In a segment of the caller’s virtual memory, return a copy of
the contents of the directory. (A user-level program can
interrogate the other levels for other information about the
objects listed in the directory — e.g., date of last change.)
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directory must first be attached to the global directory tree before entries are made in it, and

b) that a directory must be empty before being detached. A more complicated notification

mechanism will be needed if a process is allowed to construct a directory subtree before

attaching its root to the global directory tree.

A
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10. SHELL (Level 15)

Most users of the system spend most of their time employing existing programs, not
writing new ones. When a user logs in, the operating system creates a user process containing
a copy of the shell program with its default input connected to the user’s keyboard and its
default output connected to the user’s display. The shell is the program that listens to the
user’s terminal and interprets the input as commands to invoke existing programs in specified

combinations and with specified inputs.

The shell scans each complete line of input to pick out the names of programs to be
invoked and the values of arguments to be passed to them. For each program called in this
way, the shell creates a user process. The user processes are connected according to the data

flow specified in the command line.

Operations of substantial complexity can be programmed in the command language of the ~ —
UNIX shell. For example, the operations that format then print a file named “text” can be set

in motion by the command line:
tbl < text | eqn | Iptroff > output

The first program is tbl, which scans the data on its input stream and replaces descriptions of
tables of information with the necessary formatting commands. The “<” symbol indicates
that tbl is to take its input from the file “text”. The output of tbl is directed by a pipe (the *4”
symbol) to the input of egn, which replaces descriptions of equations with the necessary
formatting commands. The output of egn is then piped to Iptroff, which generates the
commands for the laser printer. Finally, the “>’ symbol indicates that the output of Iptroff is
to be placed in a file named ;‘output”. If “> output” were replaced with ¢ laser”, the data

would instead be sent directly to the laser printer.
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Having identified ihe components o nd line, the shell obtains capabilities for

them by a series of commands:

cl := SEARCH(CD, “tbl”);

c2 := SEARCH(WD, “text”);

c3 := CREATE_PIPE();

c4 := SEARCH(CD, ‘“‘eqn”);

¢5 := CREATE__ PIPE();

¢6 := SEARCH(CD, “Iptroff™);

¢7 := CREATE_ FILE();
ATTACH(c7, WD, “output”, all);

The variable ““CD” holds a capability for a commands directory and “WD”’ holds a capability
for the current working directory. Both CD and WD are part of the shell’s context (see
Figure 4).
The shell then creates and resumes user processes that execute the three components of
the pipeline and awaits their completion:
RESUME( FORK(c1, -, 2, ¢3) );
RESUME( FORK(c4, -, 3, c5) );
RESUME( FORK(cS, -, 5, c7) );
JOIN(3);
After the JOIN returns, the shell can kill these processes and acknowledge completion of the
entire command to the user (by a “prompt” character).
If the specification ‘“< text’ were omitted, the shell would have connected tbl to the

default input, which is the same as its own, namely the terminal keyboard. In this case, the

second search command would be omitted and the first fork operation would be
FORK(cl1, -, PORTS|0}, c3)

Similarly, if “> output” were omitted, the shell would have connected Iptroff to the default

output, the shell’s PORTS[I].

e
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If an.elaborate command line is to be performed-often; typing it can become tedious.
UNIX encourages users to store complicated commands in executable files called shell-scripts

that become simpler commands. A file named lb might be created with the contents:
tbl < $1| eqn | Iptroff > $2

where the names of input and output files have been replaced by variables $1 and $2. When
the command Ip is invoked, the variables $1 and $2 are replaced by the arguments following

the command. For example, typing
1p text output

would substitute “text” for $1 and “output’’ for $2 and so would have exactly the same effect )

as the original command line.

11. INITIALIZATION

One small but essential piece of an operating system has not been discussed -- the method
of starting up the system. The startup procedure, called a bootstrap sequence, begins with a
very short program copied into the low end of main memory from a permanen‘t read-only
memory. This program loads a longer program from the disk, which then takes control and
loads the operating system itself. Finally, the operating system creates a special login procesg

connected to each terminal of the system.

When a user correctly types an identifier and a password, the login process will create a
shell process connected to the same terminal. When the user types a logout command, the

shell process will exit and the login process will resume its vigil over the terminal.
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12. CONCLUSION

We have used the levels model to describe the functions of contemporary multi-machine
operating systems. This description shows how it is possible to systematically hide the physical
locations of all sharable objects and yet be able to locate them quickly when given a name in

the directory hierarchy.

The directory function can be generalized from its traditional role by storing capabilities,
rather than file identifiers, in directory entries. No user machine need have a full, local copy of
the directory structure; it need only encache the view with which it is currently working. The

full structure is maintained by a small group of machines implementing a stable store.

The model can deal with heterogeneous systems consisting of general purpose user
machines, such as workstations, and special purpose machines, such as stable stores, file
servers, and supercomputers. Only the user machines need contain a full operating system; the
special purpose machines require only a simple operating system capable of managing local

tasks and communicating on the network.

The levels model is based on the same principle found in nature to organize many scales
of space and time. At each level of abstraction there are well defined rules of interaction for
the objects visible at that level; the rules can be understood without detailed knowledge of the
smaller elements making up those objects. The many parts of an operating system cannot be

fully understood without recourse to this principle.
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